
Caligo, an Extensible Block Cipher
-and-

CHash, a Caligo Based Hash

Alexis W. Machado
email: alexis.machado(@task.com.br @telemigcelular.com.br)

Mar/09/2006

Abstract: The Caligo operations are performed on whole blocks only. No subdivision
passes through an s-box or a Feistel network. The cipher definition is the same for any
block size, allowing exhaustive search for statistical deviations on small block variants.
I also propose CHash, a hash function that takes advantage of the cipher extensibility
and resists the extension attack.

Keywords: Caligo, extensible, block cipher, symmetric key, CHash, extension attack.

1) Introduction

Currently, there is no provably secure block cipher. After withstanding many attempts of
cryptanalysis, the algorithm is assumed to be secure. With a single definition for any block size,
Caligo permits full inspection of small block variants, simplifying the search for defects and
associated cryptanalytic attacks.

In sections 2 and 3, the algorithm is described. In section 4, the definition of CHash is given. In
sections 5 and 6, the results of seeking for frequently differentials, impossible differentials and
linear correlations are presented. In section 7, competitive performance on two 64-bit processors
is shown.

2) Encryption and Decryption

Given a natural number n, each element of the set Ω = {0, 1, 2, .. , 2n–1} have a distinct binary
representation in the set Ψ = {0, 1}n. The term block identifies an integer from Ω or the
correspondent bit-sequence of Ψ (n is called the block size). Therefore, we can do algebraic or
bitwise operations on a block by considering it an element of Ω or Ψ respectively.

Been r the number of rounds of the cipher, the encryption and decryption round functions fi, gi:
Ω3r × Ω  Ω are defined, respectively, by

fi(K, X) = (K[3i] × (X  K[3i+1]))" + K[3i+2] (mod 2n) (0  i  r) (2.1)
gi(K, X) = (K[3i]-1 × (X – K[3i+2])")  K[3i+1] (mod 2n) (0  i  r) (2.2)

where
a) The subkey vector K =  K[0], K[1], .. K[3r-1]  have 3r odd-blocks derived from a

secret block called masterkey (see section 3). K[3i]-1 is the multiplicative inverse (mod
2n) of K[3i] (these elements should be calculated during the subkey setup and stored
together with K).

b) X is an input block.
c) " is the bit-reversal of a block. Example for n = 8: (01001101)" = 10110010.
d)  is the bitwise xor of two blocks.
e) ×, + and – are the integer multiplication, addition and subtraction, reduced mod 2n.

A composition (in the second parameter) of the round functions is performed to construct the
encryption and decryption functions :

f (r, K, X) = fr-1 ○ fr-2 ○ ... ○ f1 ○ f0 (K, X) (2.3)
g (r, K, X) = g0 ○ g1 ○ ... ○ gr-2 ○ gr-1 (K, X) (2.4)

The above n-bit block round functions (2.1 and 2.2) can embed the encryption/decryption of
smaller blocks with n–m bit length (0  m  n). The input/output n–m least significant bits
represent the smaller block been processed. The most significant n–m bits must be shifted to the
least significant n–m positions after the bit-reversal (it's equivalent to shift the least significant
n–m bits to the most significant n–m positions before the bit-reversal). The modified (and more
general) round functions are

fi(K, X) = (2m × K[3i] × (X  K[3i+1]))" + K[3i+2] (mod 2n) (0  i  r) (2.5)
gi(K, X) = (K[3i]-1 × (2m × (X – K[3i+2]))")  K[3i+1] (mod 2n) (0  i  r) (2.6)

The “user” interacts with the cipher by passing and receiving n-bit strings, which are interpreted
in accord with the little endian convention (least significant bits in lower addresses).

3) Subkey Setup

First consider the sequence of blocks based on a T-function [4] :

R0 = 0
Ri+1 = Ri + ((Ri × Ri)  5) (i ³ 0)

where  is the bitwise or operation. Note that Ri have the same parity of i. Let Ce and Co be
constant vectors formed by 3r even-blocks and 3r odd-blocks respectively:

Ce[i] = R20+2i (0  i  3r)
Co[i] = R20+2i+1 (0  i  3r)

The cipher masterkey is a single block M provided by the user. From M we derive the “weak”
subkey vector W, formed by 3r odd-blocks:

W[i] = M  Ce[i] (0  i  3r) when M is odd
or

W[i] = M  Co[i] (0  i  3r) when M is even

The subkey vector K, used for encryption and decryption, have 3r odd-blocks. Is derived from M,
Co and W in the following way :

M¢ = f (r , Co , M)
K[i] = f (r , W, M¢ + i)  1 (0  i  3r)

The or operation forces K[i] to be odd. Since W is derived from M in a very simple way, it's
prudent to avoid a direct interaction between them to compute K[i]. The combination of W and
M¢ guarantees that even related masterkeys (M) will produce uncorrelated subkey vectors (K).
Furthermore, it's hard for an attacker to find a subkey K[i] based on the knowledge of other
subkeys of K.

4) CHash, a Caligo Based Hash

Forced by the birthday paradox, cryptographic hashes must generate very large digests. Due to
the block extensibility, Caligo can be used in hash modes with any suitable block size, without
redefining the algorithm. A particular hash mode to be used with the cipher is proposed in this
section. The resulting function is called CHash.

By using the weak vector W (instead of K), taking into account that W depends on the masterkey
(W = (M)) and choosing r = 6 , we define the encryption function w as

w(M, X) = f (6, W, X) = f (6, (M), X)

The L-bit string to be hashed, S = S1||S2|| .. ||Sm , is viewed as a concatenation of n-bit substrings
or blocks. Sm must be end-padded with zeros if L is not a multiple of n. The implementor may
choose any suitable block size (generally 160  n  512). The hash construction is

H0 = 0
Hi = w(Hi-1 , Si)  Hi-1  Si (1  i  m) (4.1)
Hm+1 = w(1, Hm  L)  Hm  L (m ³ 0) (4.2)

where
a) The Preneel-Miyaguchi mode is applied to compute H1 . . Hm . This scheme compensates

the use of W (instead of K), since an attacker can't control the masterkey (Hi-1) directly.
For a discussion on Preneel-Miyaguchi security, see ref. [6] and [7].

b) Hm+1 is the hash of S.
c) The use of L in Hm+1 is equivalent to the Merkle-Damgård strengthening.
d) Hm+1 breaks the chain on the first parameter by using the fixed masterkey 1. Moreover, it

doesn't depend on S directly. Therefore, Hm+1 is unlikely to appear in (or used to calculate)

an intermediate state of another string. This avoids the extension attack , in which the
adversary can compute the hash of S||S' without knowing S (or a part of it), but only the
hash of S (for Merkle-Damgård strengthened strings, given only the hash of S and the
block L representing the length of S, he can calculate the hash of S||L||S') (see [5,
section 6.3.1]).

e) m = (L + n – 1) / n. For the empty string, L = 0  m = 0  Hm+1 = H1 = w(1, 0).
f) The input size limitation is 0 ≤ L < 2n/2 .

Since the W setup is faster than a block encryption, CHash is not supposed to be much slower
than an encryption mode like CBC. The compression function (4.1) timings are given in section
7.

5) Differential Properties

For the cipher, the relation between an input block X, an input difference U and the resulting
output difference V is given by

V = f (r, K, X)  f (r, K, X  U) (5.1)

In the encryption and decryption functions, the addition and subtraction of a constant operand
K[3i+2] protects the cipher against differentials U, V when U  V have high Hamming weight
or U Ù V (bitwise and) have long runs of 1's (see [2]). The multiplication by K[3i] and K[3i]-1

gives little protection against differentials U, V when U and V have low Hamming weight
concentrated in the most significant bits. The bit-reversal swaps these bits to the least significant
positions, and the next multiplication can provide a good diffusion.

For M = 0, all possible 16-bit input blocks (X) and input differences (U) had been tested to count
the occurrences of all difference pairs or differentials U, V. The most frequent differential,
Umax, Vmax, for up to 10 rounds was acquired.

For a round function where the addition operation is replaced by xor (table 5.1), the best pair
found is formed by the iterative palindromic difference Up = U = V = 215 -2 = 0111...1110. The
pair Up , Up occurs with probability 1/2 in a round. Analyzing this experimental result, we can
see that the multiplication have no effect against Up = 2n-1-2, for all n, when X is odd (hence
probability 1/2 for any X). In fact, for an odd subkey k and an odd block X, the congruences
XUp ≡ Up+2-X (mod 2n) and k(Up+2) ≡ Up+2 (mod 2n) implies k(X  Up)  kX ≡ Up (mod
2n). The difference Up can be concatenated to built a high probability (1/2r) r-round differential
characteristic [1].

For the addition operation, the probability of the above pair Up ,Up falls drastically to 1/2n-2,
since Up Ù Up have a run of n-2 binary 1's [2]. Accordingly, tables 5.2 and 5.3 show how the
distribution of differentials U, V flattens fast as the number of rounds increases, but stops at
round four. This same behavior was observed on up to 28-bit blocks. It's reasonable to
conjecture that we gain no additional protection against conventional differential cryptanalysis

with more than four rounds.

Rounds Umax Vmax Umax, Vmax
occurrences

1 0x8000 0x0001 0x10000
2 0x7FFE 0x7FFE 0x4000
3 0x7FFE 0x7FFE 0x1FF0
4 0x7FFE 0x7FFE 0x1028
5 0x7FFE 0x7FFE 0x07F2
6 0x7FFE 0x7FFE 0x03AE
7 0x7FFE 0x7FFE 0x01E0
8 0x7FFE 0x7FFE 0x00E4
9 0x7FFE 0x7FFE 0x0072
10 0x7FFE 0x7FFE 0x0040

Table 5.1: Max. differential occurrences for n = 16
and addition replaced by xor

Round
s

Umax Vmax Umax, Vmax
occurrences

Rounds Umax Vmax Umax, Vmax
occurrences

1 0x8000 0x0003 0x8000 1 0x20000 0x00003 0x20000
2 0x0824 0x0004 0x180A 2 0x29091 0x00003 0x01F7C
3 0x2000 0x0120 0x0050 3 0x02440 0x010A0 0x000DE
4 0x5200 0x0003 0x002A 4 0x3B236 0x2DB86 0x00016
5 0x3B82 0x1AFB 0x0012 5 0x08A1E 0x1C2C7 0x00014
6 0xF048 0x1B39 0x0014 6 0x17672 0x0165E 0x00016
7 0xC454 0xFF89 0x0014 7 0x3147B 0x12CB1 0x00016
8 0xDA97 0x5774 0x0014 8 0x02AB5 0x1A822 0x00014
9 0x6EC6 0xAEE4 0x0014 9 0x00A10 0x133BA 0x00014
10 0x0823 0x28EB 0x0012 10 0x01089 0x31860 0x00014

Table 5.2: Max. differential occurrences for n = 16 and
correct round functions

Table 5.3: Max. differential occurrences for n = 18 and
correct round functions

In the tables 5.2 and 5.3, U = 2n-1 (0x8000 and 0x20000) seems to be good input differences
(they pass through multiplication with probability 1 and the addition transforms the (bit-reversed)
difference 0x01 into 0x03 with probability 1/2). Therefore, it's interesting to verify what the fixed
U = 224-1 (0x800000) and U = 228-1 (0x8000000) can do with 24 and 28-bit blocks respectively
(tables 5.4 and 5.5).

Round
s

U Vmax U, Vmax
occurrences

Rounds U Vmax U, Vmax
occurrences

1 0x800000 0x000003 0x800000 1 0x8000000 0x0000003 0x8000000
2 0x800000 0xA92160 0x002280 2 0x8000000 0x58221E2 0x0003624
3 0x800000 0x1F0210 0x00011A 3 0x8000000 0x9400128 0x0000430
4 0x800000 0x82897F 0x000010 4 0x8000000 0x0000030 0x000002E
5 0x800000 0x9CE780 0x00000E 5 0x8000000 0x17A3DCA 0x0000010
6 0x800000 0xECD8F7 0x000010 6 0x8000000 0x36A3B96 0x0000010
7 0x800000 0xE99DFD 0x000010 7 0x8000000 0xD41C966 0x0000010
8 0x800000 0x8A7D68 0x000012 8 0x8000000 0x5F69B6C 0x0000010
9 0x800000 0x555D5A 0x000010 9 0x8000000 0x06CBC79 0x0000012
10 0x800000 0x3FE0FA 0x000010 10 0x8000000 0x8EFE2DE 0x0000014

Table 5.4 : Max. differential occurrences for n = 24 and
U = 0x800000

Table 5.5 : Max. differential occurrences for n = 28 and
U = 0x8000000

A noteworthy detail in round four of tables 5.2 to 5.5, is how close are the occurrences of the
most frequent differential, despite the block size variation.

Impossible Differentials

For a given non-zero input difference U0, we see in equation 5.1 that X and X¢ = X  U0 give the
same V. So there are at most 2n-1 possible differentials U0, V and 2n-1 impossible ones. But
after changing the masterkey we may get differentials that could not be found with the previous
one.

The following tests had been done with 16 and 18-bit blocks and up to 10 rounds. In equation
5.1, for each value of U, the keys M = 0..63 had been combined with all values of X to compute
the number N of not found values of V. Tables 5.6 and 5.7 show the larger value of N (Nmax),
the associated input difference Umax and the probability Pmax = Nmax /(2n-1) (V=0 excluded) of
finding impossible differentials under these keys.

Rounds Umax Nmax Pmax Rounds Umax Nmax Pmax

1 0x8000 0xFFF0 0.999771 1 0x20000 0x3FFEE 0.999935
2 0x8000 0x1A68 0.103151 2 0x20000 0x0B0BC 0.172593
3 0x0800 0x0005 0.000076 3 0x10000 0x00044 0.000259
4 0x0001 0x0000 0.000000 4 0x00001 0x00000 0.000000
5 0x0001 0x0000 0.000000 5 0x00001 0x00000 0.000000
6 0x0001 0x0000 0.000000 6 0x00001 0x00000 0.000000
7 0x0001 0x0000 0.000000 7 0x00001 0x00000 0.000000
8 0x0001 0x0000 0.000000 8 0x00001 0x00000 0.000000
9 0x0001 0x0000 0.000000 9 0x00001 0x00000 0.000000
10 0x0001 0x0000 0.000000 10 0x00001 0x00000 0.000000

Table 5.6: Max. impossible differentials for n = 16
and M = 0..63

Table 5.7: Max. impossible differentials for n = 18
and M = 0..63

These tables prove that, in 16 and 18-bit cases, there are no impossible differentials from 4 to 10
rounds of the cipher. This is coherent with the fact that, for round 4 an beyond, the differential
distributions are equally closer to a normal distribution, as tables 5.2 to 5.5 suggest.

6) Linear Properties

To verify linear dependencies in the cipher, fixed bit groups from the input (X) and output (Y)
blocks are xored together. This is equivalent to xor the bits of the number

Z = (mx Ù X)  (my Ù Y)

where
a) mx and my are the bit group selecting masks
b) Ù is the bitwise and operator
c)  is the bitwise exclusive-or (xor) operator
d) Y = f (r, K, X)

Ideally, the resulting bit should be odd with probability 1/2 for a randomly chosen X.

An exhaustive search was done with the 16-bit variant (n = 16) and M = 0. For each mask pair
mx, my, all X and Y was generated. The bits of each Z was xored and the number of odd
results accumulated in N. The odd parity probability was approximated by p = N / 216 and the bias
(deviation from 1/2) by  p – 1/2 . The mask pairs with higher bias, for up to 10 rounds, are in
table 6.1. The bias for 18 and 20-bit blocks with fixed mx (0x00001) can bee seen in tables 6.2
and 6.3.

These tables suggest that no additional protection against a linear attack is achieved with more
than four rounds.

Rounds mx my N p Bias
1 0x0001 0x8000 0x26EA 0.1520 0.3480
2 0x400F 0xB000 0x5E18 0.3676 0.1324
3 0x0C01 0x8D30 0x865C 0.5248 0.0248
4 0x07E3 0xB000 0x83AE 0.5144 0.0144
5 0xBD75 0x57E4 0x7CD6 0.4876 0.0124
6 0xDDB5 0xDC68 0x7CB0 0.4871 0.0129
7 0x1C6E 0x5D44 0x7CBA 0.4872 0.0128
8 0xFD1A 0xBD9A 0x7CD4 0.4876 0.0124
9 0xB9F2 0x0492 0x7CD0 0.4875 0.0125
10 0x4106 0x0D98 0x8304 0.5118 0.0118

Table 6.1: Higher bias for n = 16 and M = 0

Rounds mx my N Bias Rounds mx my N Bias
1 0x00001 0x20000 0x01F66 0.4693 1 0x00001 0x80000 0xE6296 0.3991
2 0x00001 0x1A67E 0x21922 0.0245 2 0x00001 0xA3685 0x82CD4 0.0109
3 0x00001 0x3CF63 0x20816 0.0079 3 0x00001 0xBDC23 0x80EFC 0.0037
4 0x00001 0x147F9 0x1FB42 0.0046 4 0x00001 0x291DC 0x7F42E 0.0029
5 0x00001 0x1206A 0x1FAFC 0.0049 5 0x00001 0x7DA35 0x80A5C 0.0025
6 0x00001 0x384DA 0x1FA82 0.0054 6 0x00001 0x210E1 0x7F5FC 0.0024
7 0x00001 0x12A2C 0x204B8 0.0046 7 0x00001 0xC5A45 0x7F5DC 0.0025
8 0x00001 0x0EE66 0x1FB0C 0.0048 8 0x00001 0x37ACF 0x7F5A0 0.0025
9 0x00001 0x347C0 0x2051E 0.0050 9 0x00001 0x27CDF 0x7F5F8 0.0024
10 0x00001 0x1A54E 0x2048E 0.0044 10 0x00001 0xB5AE2 0x7F532 0.0026

Table 6.2: Higher bias for n = 18, M = 0 and fixed input
mask 0x00001

Table 6.3: Higher bias for n = 20, M = 0 and fixed input
mask 0x00001

7) Performance

To be competitive, this algorithm needs a processor with fast 64-bit multiplication like Alpha
21264, Itanium or Athlon64. Table 7.1 compares Caligo with Rijndael C code running on Alpha
21264 processor (see ref. [3]).

Cipher Rounds Key size Block size Encryption
cycles/byte

Rijndael 10 128 128 18

Caligo 6 128 128 23

Caligo 6 256 256 20

Caligo 6 320 320 23

Caligo 6 512 512 39
Table 7.1: Alpha 21264, C code performance of Caligo.

Table 7.2 shows the timings on the AMD Athlon64 processor under Red-Hat Linux. In this case,
the mul and bswap 64-bit assembly instructions was embedded in the C code.

Rounds Block size Encryption
cycles/byte

Decryption
cycles/byte

6 128 21 20

6 256 23 23

6 320 26 26

6 512 38 39
Table 7.2: AMD Atlhon64, C+assembly code performance
of Caligo.

Table 7.3 gives the CHash compression function (4.1) performance on the Alpha 21264
processor. The code had been written in C.

Hash Block size Cycles/block Cycles/byte

CHash-256 256 926 28

CHash-320 320 1247 31

CHash-512 512 0 45
Table 7.3: Alpha 21264, C code performance of the CHash
compression function.

References

[1] V. Furman “Differential Cryptanalysis of Nimbus”, Fast Software Encryption: 8th
International Workshop

[2] A. Machado “Differential Probability of Modular Addition with a Constant Operand”
http://eprint.iacr.org/2001/052

[3] R. Weiss and N. Binkert “A comparison of AES candidates on the Alpha 21264”
http://csrc.nist.gov/encryption/aes/round2/conf3/papers/18-rweiss.pdf

[4] A. Klimov “Applications of T-functions in cryptography”
http://www.wisdom.weizmann.ac.il/~ask/th.ps.gz

[5] N. Ferguson and B. Schneier “Practical Cryptography”. Wiley Publishing, 2003.

[6] B. Preneel, R. Govaerts and J. Vandewalle, “Hash functions based on block ciphers: A
synthetic approach” http://www.cosic.esat.kuleuven.be/publications/article-48.pdf

[7] J. Black, P. Rogaway, and T. Shrimpton, “Black-Box Analysis of the Block-Cipher-Based
Hash-Function Constructions from PGV” http://www.cs.ucdavis.edu/~rogaway/papers/hash.pdf

Appendix A: Caligo Test Vectors

The masterkey (M), plaintext (X0) and ciphertext (Xr) blocks are given in hexadecimal.

A.1) n = 256, r = 6

M = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X0 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
Xr = 4F3311B6 A9B391B2 AD0D74E6 F55296F2 911BA9F7 18833BCC 0FD9FCE4 E134AC7C

M = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X0 = 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
Xr = 32C66775 46371E6F 6E124370 D2149A02 9B61096D 5637AA0E D909AC2C 777D5931

M = 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X0 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
Xr = DB87C4DE 5314A39B E79F7B65 E294A9B7 30A03BDD 60F98784 3FEE940F B3E38C09

A.2) n = 320, r = 6

M = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000

X0 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000

Xr = 28554800 088778B4 C7A14690 3876A6EB 6A663BF2 63C4C131 78C9E23C E40ABA5A
97F1976F D5AD179B

M = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000

X0 = 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000

Xr = 5BCC5EB3 E21526C3 774CED6E C5B60448 B7471983 1C7BE9CA 04D2078D 1A543DD4
5C1CAA47 0C46CE01

M = 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000

X0 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000

Xr = AC701C56 9B31D28B 76D91C02 4AFE4858 FECC054B 5BC877EB BEAA3954 6DE2A95C
3EA44B4E 4B3303F6

A.3) n = 512, r = 6

M = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

X0 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Xr = 9129FD59 3DCB4430 0097D220 7D4F2384 C07B4365 C7226B7E BEB01779 1E8ED80F
D6807D91 6C253196 2130D365 1A931443 57C4EE1A EE4E2AC7 6022A2D1 B6338DA4

M = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

X0 = 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Xr = 4A72B4BB 14D98F1A C0A61B69 B5ADC92D B141D71C 96A737C6 D97ACED0 2D175821
19E59037 8689DA08 455ADC00 033E9671 36CE374F E7987FA7 59243F47 958119B7

M = 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

X0 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Xr = 385B012D E0BCF842 C00BC9CD FD567EE2 B971323A 29DF26CE 37202E83 634B2466
E5688E3E C785C42F 870E9D31 17DD6101 617880EF B0AE0231 2A2B8B67 0BBED0DD

Appendix B: CHash Test Vectors

B.1) The empty string
n=256: A78FD14E 92A1B6A2 3CA9B32B F87D1560 908F7241 675C3F33 356B863F 55DB056A

n=320: BB248F5A 4428391F 38BACB08 B7FE21C1 2C3D338A AC865AB2 5366FD74 3AAE2CED
8F07F6F0 A2D0DDFD

n=512: DBEE2656 D4E48C27 167B59EB 25D596EA B09A36F3 DCDD634A 7975AE99 6ED9D1D1
09D3C093 685A7687 E08A36BE AEF3CC4F 7FF27288 23A6EBD1 89FEC156 29536EE9

B.2) The string “abc”
n=256: 5BB659EE 309766BA C445C26E 943839D2 E833F3BF 343AEA39 449F5AEF B9F2D404

n=320: 72DD6C73 EBF679A2 17086626 C4BBC793 74D5DE6E 576B3D48 E9977AA2 CFE2352D
C8E4A75F 71CA2B0D

n=512: D89E708A 2EE4537A 801B56CF 5318DC31 F0A134D0 28EDB69A D4645C54 02688769
49F377E4 F977002F E7F68420 6E3F82D9 58E78FDF 9CA45E69 70D3B0BC C2FEFE02

B.2) The string formed by “a” repeated 1000 times
n=256: B7B8F460 CB4F5A54 9334CD86 644B49DE 4F4EAB4B 6F9D54DE 75FEA58A E7760566

n=320: 954F57F7 FBAB9AC5 C32815AB 4A1111E7 AE892ED6 66B93DB3 91A23588 4EEC0693
712A269B A7686CE9

n=512: 47E10EE0 E28613C5 83A35EB9 9CE63B99 E9E5A02A 9DEF59BC 26DD0F4A B389E1CA
6DBAE7BD 14F7998C 115523D8 D4F2F8FE 3C4C8CA5 DD51363A D53F6F3B F1557BF7

